viernes, 13 de noviembre de 2009
Cientificos Famosos Destacados En El Estudio Del Universo....
Nicolas Copenico
Nicolás Copérnico:
Fue el astrónomo que formuló la primera teoría heliocéntrica del Sistema Solar. Su libro, "De revolutionibus orbium coelestium" (de las revoluciones de las esferas celestes), es usualmente concebido como el punto inicial o fundador de la astronomía moderna, además de ser una pieza clave en lo que se llamó la Revolución Científica en la época del Renacimiento. Copérnico pasó cerca de veinticinco años trabajando en el desarrollo de su modelo heliocéntrico del universo. En aquella época resultó difícil que los científicos lo aceptaran, ya que suponía una auténtica revolución.
Entre los grandes eruditos de la Revolución Científica, Copérnico era matemático, astrónomo, jurista, físico, clérigo católico, gobernador, administrador, líder militar, diplomático y economista. Junto con sus extensas responsabilidades, la astronomía figuraba como poco más que una distracción. Por su gran contribución en el campo de la astronomía, en 1935 se decidió en su honor llamarle «Copernicus» a un cráter lunar visible con la ayuda de binoculares, ubicado en el Mare Insularum.[1]
El modelo heliocéntrico es considerado como una de las teorías más importantes en la historia de la ciencia occidental.Tycho Brahe
Tycho Brahe:
(Tyge Ottesen Brahe) (Knutstorp, Escania, 14 de diciembre de 1546 - Praga, 24 de octubre de 1601), astrónomo danés. Tycho Brahe fue bautizado Tyge por sus padres Beate Bille y Otte Brahe. Es ahora conocido como Tycho ya que es la versión latinizada de su nombre que él adoptó cuando tenía unos quince años. Otte Brahe, el padre de Tycho, procedía de la nobleza danesa y era un hombre importante entre el grupo más cercano de adeptos al rey danés. Beate Bille, la madre de Tycho, también venía de una importante familia que había producido importantes eclesiásticos y políticos. Tycho fue uno de dos gemelos, pero su gemelo murió poco después de nacer. Sus padres ya tenían una hija anterior pero Tycho fue su primer hijo varón. Un extraño episodio ocurrió cuando Tycho tenía dos años. Su tío, Jorgen Brahe sin el conocimiento de sus padres lo lleva con él. Fue un extraño episodio ya que no parece causar disputas familiares ni hizo que sus padres intentasen recuperarlo. Jorgen Brahe, y su mujer Inger Oxe no tenían hijos propios, y actuaron como padres adoptivos para Tycho hasta la muerte de Jorgen. Brahe, como su hermano Otte Brahe, fue un noble principal danés mientras que Inger Oxe era la hermana de Peder Oxe que fue miembro de los Rigsraads, el consejo de gobierno compuesto de 20 consejeros del Rey. De hecho Tycho se benefició mucho en el aspecto educacional de su madre adoptiva Inger Oxe que tenía inquietudes intelectuales como otros miembros de su familia, mientras que los Brahes y los Billes tenían poco tiempo para pretensiones educativas.
Jorgen Brahe mandaba el castillo de Tostrup, y fue en ese castillo donde vivió Tycho desde que fue llevado por Jorgen hasta que tuvo seis años. No deberíamos dar la impresión de que no viajo durante este tiempo, ya que sus padres tenían muchas obligaciones administrativas que les llevaban fuera y es posible que Tycho a veces fuese con uno de ellos. En 1552 se dio a Jorgen el mando del Castillo de Vordinborg, lo que era un ascenso a un cargo más importante. Aproximadamente un año después de que Tycho se mudase a Vordingborg con sus padres adoptivos comenzó a asistir a la escuela, casi con certeza asistiendo a la que estaba anexa a la catedral local. Aunque el padre de Tycho, Otte, consideraba que aprender latín era una pérdida de tiempo, sus padres adoptivos eran mucho más proclives a que él recibiera este tipo de educación. Tycho asistió a esta escuela hasta que tuvo doce años, y después comenzó sus estudios universitarios como astrónomo.
Hizo que se construyera Uraniborg, un palacio que se convertiría en el primer instituto de investigación astronómica. Los instrumentos diseñados por Brahe le permitieron medir las posiciones de las estrellas y los planetas con una precisión muy superior a la de la época. Atraído por la fama de Brahe, Johannes Kepler aceptó una invitación que le hizo para trabajar junto a él en Praga. Tycho pensaba que el progreso en astronomía no podía conseguirse por la observación ocasional e investigaciones puntuales sino que se necesitaban medidas sistemáticas, noche tras noche, utilizando los instrumentos más precisos posibles.
Tras la muerte de Brahe las medidas sobre la posición de los planetas pasaron a posesión de Kepler, y las medidas del movimiento de Marte, en particular de su movimiento retrógrado, fueron esenciales para que pudiera formular las tres leyes que rigen el movimiento de los planetas. Posteriormente, estas leyes sirvieron de base a la Ley de la Gravitación Universal de Newton.
jueves, 12 de noviembre de 2009
Johannes Kepler
Johannes Kepler
Cuatro años más tarde, unos meses después de contraer un matrimonio de conveniencia, el edicto del archiduque Fernando contra los maestros protestantes le obligó a abandonar Austria y en 1600 se trasladó a Praga invitado por Tycho Brahe. Cuando éste murió repentinamente al año siguiente, Kepler lo sustituyó como matemático imperial de Rodolfo II, con el encargo de acabar las tablas astronómicas iniciadas por Brahe y en calidad de consejero astrológico, función a la que recurrió con frecuencia para ganarse la vida.
En 1611 fallecieron su esposa y uno de sus tres hijos; poco tiempo después, tras el óbito del emperador y la subida al trono de su hermano Matías, fue nombrado profesor de matemáticas en Linz. Allí residió Kepler hasta que, en 1626, las dificultades económicas y el clima de inestabilidad originado por la guerra de los Treinta Años lo llevaron a Ulm, donde supervisó la impresión de las Tablas rudolfinas, iniciadas por Brahe y completadas en 1624 por él mismo utilizando las leyes relativas a
los movimientos planetarios que aquél estableció.
En 1628 pasó al servicio de A. von Wallenstein, en Sagan (Silesia), quien le prometió, en vano, resarcirle de la deuda contraída con él por
La primera etapa en la obra de Kepler, desarrollada durante sus años en Graz, se centró en los problemas relacionados con las órbitas planetarias, así como en las velocidades variables con que los planetas las recorren, para lo que partió de la concepción pitagórica según la cual el mundo se rige en base a una armonía preestablecida. Tras intentar una solución aritmética de la cuestión, creyó encontrar una respuesta geométrica relacionando los intervalos entre las órbitas de los seis planetas entonces conocidos con los cinco sólidos regulares. Juzgó haber resuelto así un «misterio cosmográfico» que expuso en su primera obra, Mysterium cosmographicum (El misterio cosmográfico, 1596), de la que envió un ejemplar a Brahe y otro a Galileo, con el cual mantuvo una esporádica relación epistolar y a quien se unió en la defensa de la causa copernicana.
Durante el tiempo que permaneció en Praga, Kepler realizó una notable labor en el campo de la óptica: enunció una primera aproximación satisfactoria de la ley de la refracción, distinguió por vez primera claramente entre los problemas físicos de la visión y sus aspectos fisiológicos, y analizó el aspecto geométrico de diversos sistemas ópticos.
Pero el trabajo más importante de Kepler fue la revisión de los esquemas cosmológicos conocidos a partir de la gran cantidad de observaciones acumuladas por Brahe (en especial, las relativas a Marte), labor que desembocó en la publicación, en 1609, de
Culminó su obra durante su estancia en Linz, en donde enunció la tercera de sus leyes, que relaciona numéricamente los períodos de revolución de los planetas con sus distancias medias al Sol; la publicó en 1619 en Harmonices mundi (Sobre la armonía del mundo), como una más de las armonías de la naturaleza, cuyo secreto creyó haber conseguido desvelar merced a una peculiar síntesis entre la astronomía, la música y la geometría.
Isaac Newton
Isaac Neewton:
Científico inglés (Woolsthorpe, Lincolnshire, 1642 - Londres, 1727). Hijo póstumo y prematuro, su madre preparó para él un destino de granjero; pero finalmente se convenció del talento del muchacho y le envió a la Universidad de Cambridge, en donde hubo de trabajar para pagarse los estudios. Allí Newton no destacó especialmente, pero asimiló los conocimientos y principios científicos de mediados del siglo XVII, con las innovaciones introducidas por Galileo, Bacon, Descartes, Kepler y otros.
Tras su graduación en 1665, Isaac Newton se orientó hacia la investigación en Física y Matemáticas, con tal acierto que a los 29 años ya había formulado teorías que señalarían el camino de la ciencia moderna hasta el siglo xx; por entonces ya había obtenido una cátedra en su universidad (1669).
Suele considerarse a Isaac Newton uno de los protagonistas principales de la llamada «Revolución científica» del siglo XVII y, en cualquier caso, el padre de la mecánica moderna. No obstante, siempre fue remiso a dar publicidad a sus descubrimientos, razón por la que muchos de ellos se conocieron con años de retraso.
Newton coincidió con Leibniz en el descubrimiento del cálculo integral, que contribuiría a una profunda renovación de las Matemáticas; también formuló el teorema del binomio (binomio de Newton). Pero sus aportaciones esenciales se produjeron en el terreno de la Física.
Sus primeras investigaciones giraron en torno a la óptica: explicando la composición de la luz blanca como mezcla de los colores del arco iris, Isaac Newton formuló una teoría sobre la naturaleza corpuscular de la luz y diseñó en 1668 el primer telescopio de reflector, del tipo de los que se usan actualmente en la mayoría de los observatorios astronómicos; más tarde recogió su visión de esta materia en la obra Óptica (1703).
También trabajó en otras áreas, como la termodinámica y la acústica; pero su lugar en la historia de la ciencia se lo debe sobre todo a su refundación de la mecánica. En su obra más importante, Principios matemáticos de la filosofía natural (1687), formuló rigurosamente las tres leyes fundamentales del movimiento: la primera ley de Newton o ley de la inercia, según la cual todo cuerpo permanece en reposo o en movimiento rectilíneo uniforme si no actúa sobre él ninguna fuerza; la segunda o principio fundamental de la dinámica, según el cual la aceleración que experimenta un cuerpo es igual a la fuerza ejercida sobre él dividida por su masa; y la tercera, que explica que por cada fuerza o acción ejercida sobre un cuerpo existe una reacción igual de sentido contrario.
De estas tres leyes dedujo una cuarta, que es la más conocida: la ley de la gravedad, que según la leyenda le fue sugerida por la observación de la caída de una manzana del árbol. Descubrió que la fuerza de atracción entre la Tierra y la Luna era directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que las separa, calculándose dicha fuerza mediante el producto de ese cociente por una constante G; al extender ese principio general a todos los cuerpos del Universo lo convirtió en la ley de gravitación universal.Albert Einstein
- Todos los observadores que se mueven entre sí con velocidad constante son equivalentes en lo que a las leyes de la física se refiere. Este es el principio de relatividad que excluye la noción de espacios y tiempos absolutos.
- La velocidad de la luz en el vacío es la misma para todos los observadores, 299.792 kilómetros por segundo, y es independiente del movimiento relativo entre la fuente de luz y el observador. Este postulado explica el resultado negativo del experimento de Michelson y Morley. En esos primeros años Einstein plantea su famosa relación E = m x c2, el producto de la masa por el cuadrado de la velocidad de la luz dan la energía asociada a una masa m. Masa y energía son dos formas equivalentes. Esto produjo una revolución en nuestra comprensión de la física del Sol y las estrellas y constituye la base de la energía nuclear.